Aaron (Jiaxun) Li

(+1) 510-520-5351 jiaxun_li@g.harvard.edu Cambridge, MA Google Scholar Github LinkedIn

Education

Harvard University

M.E. Computational Science and Engineering (Thesis Track) Cross-Registered at MIT EECS GPA: 3.91/4.00

University of California, Berkeley

B.A. Computer Science (EECS Honors), GPA: 3.92/4.00 B.A. Psychology, GPA: 3.90/4.00

Research Interests

Explainable AI, Mechanistic Interpretability, Trustworthy AI, Large Language Models

Research Experience

AI4LIFE Research Group, Harvard University

Graduate Student Researcher, advised by Prof. Himabindu Lakkaraju

• **RLHF's Impact on Language Model Trustworthiness** Conducted the first systematic evaluation of RLHF's impact on trustworthiness, revealing conflicts between alignment goals and dataset limitations; introduced a novel influence function-based data attribution method for RLHF, which enables downstream data-level mitigation.

• Unified Evaluation for Robustness of Sparse Autoencoders (In Progress) Explored the limitations of sparse autoencoders by evaluating the robustness of their generated concept-level interpretations of pretrained LLMs; working on efficient input-level attacks that manipulate the neuron activation patterns in the sparse latent representations.

• Chain-of-Thought (CoT) in Weak-to-Strong Generalization (In Progress) Evaluated the change in LLM performance with CoT prompting as the result of weak-to-strong generalization; working on explaining the changes in reasoning coherence and CoT faithfulness.

• Certified LLM Defense

Provided certified robustness guarantees for empirical defense procedures against adversarial prompting targeting LLMs. Developed efficient variants of certifiable safety-checking algorithms.

Yu Group, UC Berkeley

Undergraduate Researcher, advised by Prof. Bin Yu

• Efficient Concept-level Debugging for Prototype-based Neural Networks

Improved model interpretability of widely used prototype-based CNNs by aligning generated visual explanations with collected human preferences. Proposed the Reward-Reweighing, Reselecting, and Retraining (R3) debugging framework, which uses reward models trained with human feedback to perform corrective updates, improving both predictive performance and interpretability.

Extended Course Project, Harvard University

Advised by Prof. Finale Doshi-Velez

• Interpretable Inverse Reinforcement Learning via Reward Decomposition

Designed an interpretable inverse reinforcement learning framework with reward decomposition, enabling transparent decision-making explanations and allowing users to evaluate and critique the trustworthiness of model outputs in high-stakes scenarios.

August 2019 - May 2023

Sep. 2023 - Present

Aug. 2022 - Aug. 2023

Oct. 2023 - May. 2024

September 2023 - May 2025 (Expected)

Shanghai AI Lab

Research Intern @ Speech Group

• Post-hoc Evaluation of Content and Speaker Information

Used post-hoc explainability methods such as LIME and Shapley Values to analyze state-of-the-art text-to-speech and voice conversion frameworks, proposing an empirical gradient-based evaluation metric to quantitatively measure the disentanglement of content and speaker information.

Ponce Lab, Harvard University

Undergraduate Researcher, advised by Prof. Carlos R. Ponce

• Online Input-level Neuron Control

Extended existing online neuron control algorithms from the continuous space to the discrete image space of fixed datasets. Proposed and implemented a GAN inversion method that leverages local geometric properties in the latent feature space, allowing for the adaptation of continuous methods to a discrete setting.

Publications

- On the Inherent Instability of Sparse Autoencoders Aaron J. Li, Suraj Srinivas, Himabindu Lakkaraju Paper in preparation, planned submission to ICML 2025
- More RLHF, More Trust? On the Impact of Preference Alignment on Trustworthiness Aaron J. Li, Satyapriya Krishna, Himabindu Lakkaraju Under review at ICLR 2025, Top 3% average score
- [3] Improving Prototypical Visual Explanations with Reward Reweighing, Reselection, and Retraining Aaron J. Li, Robin Netzorg, Zhihan Cheng, Zhuoqin Zhang, Bin Yu ICML 2024
- [4] Certifying LLM Safety Against Adversarial Prompting Aounon Kumar, Chirag Agarwal, Suraj Srinivas, Aaron J. Li, Soheil Feizi, Himabindu Lakkaraju COLM 2024

Teaching Experience

Course Staff @ UC Berkeley EECS Department

CS 170: Efficient Algorithms and Intractable Problems (Fall 2021)

- CS 188: Introduction to Artificial Intelligence (Summer 2021)
- CS 70: Discrete Mathematics and Probability Theory (Summer 2020)

Skills

Programming Languages: Python, Java, C++, C, MATLAB, R **Frameworks:** PyTorch, CUDA, TensorFlow, Keras, Gym, Ray, etc. **Tools & Utilities:** Git, Slurm, Conda, Bash, Jupyter, tmux, SQL, etc.

Coursework

Undergraduate: Machine Learning, Deep Learning, Computer Vision, Reinforcement Learning, Probability and Random Processes, Convex Optimization, Signal Processing, Efficient Algorithms, Human Neuroanatomy, Neuroimaging, Computational Models of Cognition

Graduate: Inverse Reinforcement Learning, Sensorimotor Learning, Spoken Language Processing, Geometric Machine Learning, Efficient Machine Learning

Jun. 2023 - Sep. 2023

Jun. 2022 - Dec. 2022